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Abstract

In this paper we describe the TNO ap-
proach to large-scale polarity classification
of the Blog TREC 2008 dataset. Our
participation consists of the submission of
the 5 baseline runs provided by NIST, for
which we applied a multinomial kernel ma-
chine operating on character n-gram rep-
resentations.’

1 Introduction

The polarity task of Blog TREC 2008 consists of
retrieving and ranking for each of a total of 150
topics (queries) the positive and negative opini-
ated documents in the test collection. TREC
has made available 5 topic-relevance baseline
runs, to which polarity classification or opinion
finding techniques can be applied. This allows
participants to focus on one aspect of the pro-
cessing chain. In this contribution, we describe
the result of applying the TNO polarity classi-
fication approach to these 5 baselines. We dis-
cuss the results of our submissions in section 5
and present conclusions and lessons learned in
section 6. In the next three sections, we de-
scribe the data, our feature representation, and
the general outline of our setup.

!This work was supported by the European IST Pro-
gramme Project FP6-0033812. This paper only reflects
the authors’ views and funding agencies are not liable for
any use that may be made of the information contained
herein.

2 Data and pre-processing

The TREC Blog06 collection, a 148 Gigabytes
sample of the blogosphere, is the result of
an eleven-week period crawl (December 2005-
February 2006). Due to the automated crawling
process, the dataset contains not only legitimate
blog postings, but also spam, javascript, home-
pages and RSS feed material. The data itself
consists of raw HTML, with a total of over 3.2
million documents. In order to train a classi-
fier on these class-labeled web pages, these doc-
uments have to be cleaned up and converted to
plain text, which is by far not a trivial task. Our
HTML to text conversion strategy consists of a
dedicated DOM-parser effectively stripping the
larger part of HITML tags and javascript code.
We combined this parser with the html2text
Python script? in sequence: following our dedi-
cated parser, we applied html2text.py. While
this produced reasonably clean text, we found
that in a lot of cases the output data still con-
tained tags and programming constructs. We
surmise that our results are to a large extent
influenced by this imperfect data preprocessing.

3 Character n-gram representations

We opted for a character n-gram approach to the
polarity classification task. For every training
document, we generated word boundary tran-
scending character n-grams from 2 up to 6 char-
acters. That is, the transition between two con-
secutive words, including the white space char-

2 Available from http://www.aaronsw.com/2002/htm12text/



acter, is expressed as an n-gram. For the sen-
tence 'This car really rocks’ subword character
bigrams and trigrams (’subgrams’) are

th,hi,is, ca,ar,re,ea,al,
11,1y, ro,oc,ck, ks, thi, his, (1)
car,rea,eal,all,1lly,roc, ock,cks.

A Dbigram and trigram representation that
spans word boundaries produces

th,hi, is, s#, #c, ca, ar, r#,
#r7 re7 ea7 a17 117 :LY7 y#? #r7
ro,oc,ck,ks, thi, his, is#, s#c,
f#£ca, car, ar#, r#r,
#re,rea,eal,all,1ly, 1y#,
y#r,#ro,roc, ock, cks

(2)

with # a whitespace indicator.

Every document is represented by a term
vector consisting of Li-normalized character n-
gram frequencies. In our recent work (Raaij-
makers and Kraaij, 2008); (Wilson and Raai-
jmakers, 2008); (Raaijmakers et al., 2008) we
have found ample evidence for the informativ-
ity of character n-grams. In (Raaijmakers et al.,
2008) we demonstrated for a large array of ex-
periments that character n-grams are the most
informative source of information compared to
phonemes, prosody and word n-grams. These
low-level features in fact implement a form of
attenuation (Eisner, 1996): a slight abstraction
of the underlying data that leads to the forma-
tion of string equivalence classes. For instance,
words in a sentence will invariably share many
character n-grams. Since every unique character
n-gram in an utterance constitutes a separate
feature, this produces string classes, which is a
form of abstraction. Zhang and Lee (2006) in-
vestigate similar subword representations, called
key substring group features. By compressing
substrings in a corpus in a trie (a prefix tree),
and labeling entire sets of distributionally equiv-
alent substrings with one group label, an atten-
uation effect is obtained that proves very bene-
ficial for a number of text classification tasks.

Aside from attenuation effects, character
n-grams, especially those that contain word
boundaries, have additional benefits. Treating

word boundaries as characters captures micro-
phrasal information: short strings that express
the transition of one word to another. Stemming
occurs naturally within the set of initial charac-
ter n-grams of a word, where the suffix is left
out. In addition, some part-of-speech informa-
tion is captured. For example, the modals could,
would, should can be represented by the 4-gram
ould. Likewise, the set of adverbs ending in -ly
can be concisely represented by the 3-gram 1ly#.

4 Geodesic kernels

Recent work on document -classifiation has
demonstrated the benefits of geodesic kernels
(Lafferty and Lebanon, 2005): support vector
machines that deploy geodesic distance mea-
sures on Li-normalized data. L; normalization
corresponds to normalizing the frequencies (| - |)

of a bag of events D = wy,...,w,, where | w; |
is the frequency of event w; in D:
_ |wa |wn|
Ll({wla...,’wn}) - {Z’:|wz|”z;ﬂ|w’b|}

3)
Li-normalization of data entails an embedding
of this data into the multinomial manifold P™:
an infinitely differentiable, curved information
space that is isomorphic to the parameter space
of the multinomial distribution. This informa-
tion space has geodesic properties: it is locally
Euclidean and globally curved. Distances be-
tween points therefore are best measured using
locally Euclidean and globally geodesic distance
measures. Technically, the multinomial mani-
fold P™ is isometric to the positive portion of
the n-sphere with radius 2, 8 (Kass, 1989;
Lebanon, 2005):

T={oeR" | ¢ll=2Vig; 20} (4)
by a diffeomorphism F': P" — 57
F(z) = 2V, ... 2VT0 1) (5)

This allows for measuring distance with a kernel
K between two vectors x,y in the space $7}:

K(F(z), F(y))- (6)

where the shortest path connecting these two
points in hyperspace actually is a segment of a
great circle.



Raaijmakers (2007) demonstrates that multi-
nomial kernels based on geodesic distance are
able to produce state of the art results for sen-
timent polarity classification tasks.

In the experiments reported in this work,
we use a simple, hyperparameter-free multino-
mial kernel, the negative geodesic kernel Knyap
(Zhang et al., 2005):

Kyep(z,y) = —2arccos <§": @) (7)
i=1

Notice that this kernel combines a local, Eu-
clidean notion of similarity with a geodesic no-
tion of similarity: the vector product expresses
cosine similarity, and the inverse cosine the mea-
surement of distance along a curve.

Expanding the TREC data to character n-
grams leads to a huge expansion of data. Due
to memory constraints of our systems, we took
a random portion of training data of only 16%
(amounting already to over 250 megabytes of
training data).

4.1 Thresholding decision values

Support vector machines output decision values
that either are discretized to binary classes (a
negative value produces a negative class label,
and a positive value a positive class label), or
probabilities (e.g. (Platt, 1999)). We used the
raw decision values for ranking the various pos-
itive and negative cases. We devised a simple
threshold estimator that, on the basis of class
distribution priors in the training data, deter-
mines the optimal threshold above which deci-
sion values should produce positive classes. Al-
gorithm 1 performs a one-parameter sweep, fix-
ing a decision value threshold that optimally ap-
proximates the a priori class distributions in the
training data. We used this threshold to assign
classified documents to the positive and negative
classes, prior to ranking their respective decision
values.

5 Results

In figures 1 and 2, the results for positive and
negative queries are displayed, by plotting the
difference of the produced MAP and R-PREC

Algorithm 1 Threshold estimation for decision
value discretization
Require: i, Omaz, 0; Dirain (decision values
training data); P, Py (priors); 6 (threshold);
o (step size)
Ny <0;N_ <=0
while A\ <6 4, do
for each d in Dy, do
if d < A then
N_<«<N_+1
else
N+ <= N+ +1
end if
end for
Ny = oo

N- & oy
if ’ N+—P+ ’S 0 and ’ N_ — P_ ‘S 0
then
return A
end if
A<=A+o
end while

Return \




values® and the reference values. As can be
seen, the runs for the positive queries produce
well above median scores for both MAP and R-
PREC. Averaged over the 5 baseline runs, for
the positive queries, a portion of 62.3% is equal
to or above the reference median average preci-
sion. For the R-PREC scores for positive queries
this portion is on average 70.5%. The R-PREC
scores produced by the 5 positive baseline runs
were all significantly? better than the median
R-PREC reference scores. The average differ-
ence between produced R-PREC and reference
R-PREC was +12.1%. For the negative queries,
on average, 24.7% of all MAP scores produced
were equal to or above the reference MAP val-
ues. For R-PREC, a much higher proportion of
on average 57.8% scores was equal to or above
median reference R-PREC. The averaged dif-
ference over all 5 runs for R-PREC compared
with reference R-PREC was -1.7%. In 4 out of
5 runs, this difference was significant, its average
amounting to a rather small -1.7%.

The percentages of deviations are listed in ta-
ble 1, as well as the results of the Wilcoxon
signed rank applied to the R-PREC results.

Task | % MAP | % R.PREC | MAP | R-PREC | W
POSITIVE QUERIES
basel +66.9 +75.7 26.2 21.3 +14.7
base2 +53.4 +60.8 19.4 15.4 +7.9
base3 +64.2 +73 24.1 19.4 +12.5
based +64.2 +71.6 23.8 19 +12.3
baseb +62.8 +71.6 24.8 19.7 +13.2
Average +62.3 +70.5 16.2 11.5 +12.1
NEGATIVE QUERIES
basel +22.7 +61 8.7 4.5 -1.3
base2 +14.9 +49.7 6.7 3.5 -3.3
base3 +27.7 +58.9 7.7 4 -2.3
based +31.2 +59.6 8.3 4.5 -1.6
baseb +27 +59.6 8.4 4 =
Average +24.7 +57.8 10 6.7 -1.7
Table 1: Percentage of queries with MAP scores

above/below (+/-) median average precision; per-
centage of queries with R-PREC scores above/below
median R-PREC; average MAP and average R-
PREC scores for the 5 polarity baselines; Wilcoxon
significance of the difference of the obtained score
with the reference score (p < .5), as well as the differ-
ence of the average obtained score with the average
reference score.

3Mean Average Precision and Precision at R (with R
the number of relevant documents).

4All significance results were computed with the non-
parametric Wilcoxon signed rank test, with p < .5.
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Figure 1: Difference of TNO produced MAP and R-
PREC values with the TREC reference values for
positive queries (queries sorted by descending per-
formance).

6 Conclusions

In this paper, we presented the TNO approach
to polarity classification and ranking of the Blog
TREC 2008 data. For 5 baseline runs, we ap-
plied a geodesic kernel to character n-gram rep-
resentations. We trained our system on a rela-
tive small portion of 16% of the total available
training data. Results show that our system
performs well above median for positive queries.
For negative queries, results are in 4 out of 5
runs below median, albeit with a small (but sig-
nificant) percentage. As a lesson learned, in fu-
ture TREC participation, we will invest more
time in thorough data cleaning prior to classi-
fier training and testing.
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Figure 2: Difference of TNO produced MAP and R-
PREC values with the TREC reference values for
negative queries (queries sorted by descending per-
formance).
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